Everything Municipal Concrete June 8, 2021

State of Lot of

Presenters

Amin Mneina, MSc. EIT. Member Services Coordinator MEA / OGRA

Bart Kanters, P.Eng., MBA President Concrete Ontario

Housekeeping

- > Approximately a 60-minute webinar with Q & A at the end
 - Stick around until the end to play a Kahoot for \$200 in prizes
- > All participants are muted
- Questions? Use the GoToWebinar 'Questions' Pane
- Webinar will be recorded and posted on the Concrete Ontario website along with a PDF copy of the presentation
- https://www.rmcao.org/publications/webinar-presentations/

Agenda

- > OGRA Municipal Concrete Liaison Committee Overview
- Latest OPSS Concrete Standard Updates
- New Municipal Exterior Flatwork Certification Program
- Low Carbon Concrete
- Kahoot for Amazon E-gift Cards

2012

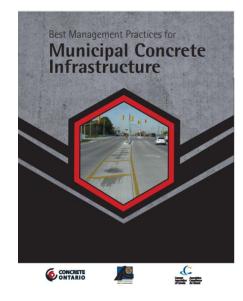
Municipal Concrete Liaison Committee

Concrete Ontario, Cement Association of Canada and the Ontario Good Roads Association agree that there are benefits to working together to resolve any current or future concrete related issues. Therefore the 3 associations have decided to form a municipal/industry liaison committee.

omlinson

FOUNDED ON STRENGTH GUIDED BY VISION

Dufferin


Concrete A CRH COMPANY

Committee Highlights

Municipal Concrete Paving Webinar Series

Best Practices Guides (Explore "Handouts section)

Municipal Concrete Award

Webinar #2 - Municipal Concrete Paving Construction June 9, 2020

70

Purpose

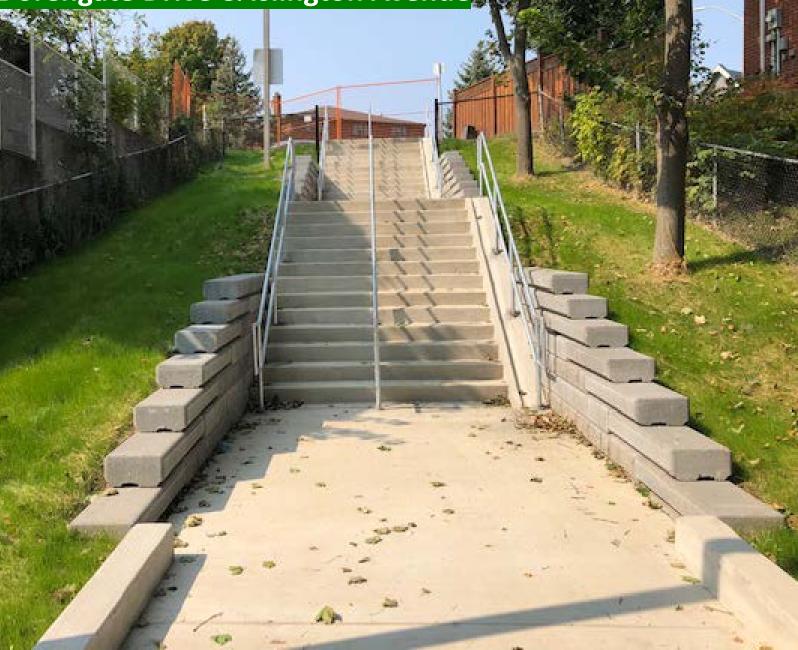
Promote and recognize the successful collaboration between municipalities and Concrete producers for excellence and innovation in Municipal Concrete projects in Ontario

TT

Judging Criteria

- Conformance to specifications based on testing
- Visual appearance
- Workmanship
- Innovation
- Other considerations (work window, traffic, interaction with public, etc.)

\$327,109.75

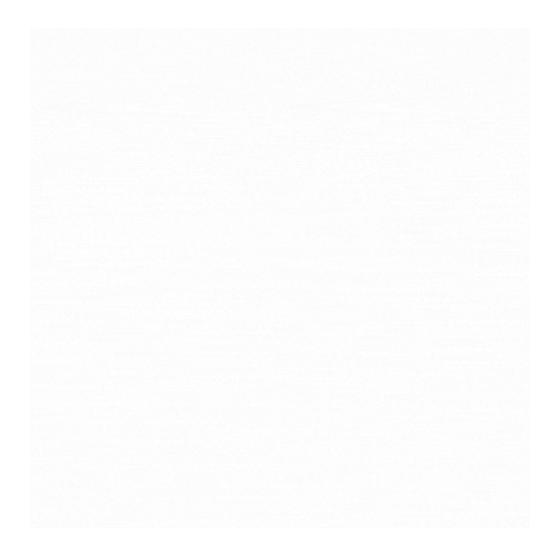

86+ cubic metres of concrete

- 67 tonnes of granular fill installed
- **12** concrete foundations
- **11 suspended concrete slabs**

2020 Winner - Reconstruction of Pedestrian Access
Dorengate Drive & Islington Avenue

- 3rd annual Municipal Concrete Award submission deadline is <u>December 17,</u>
 <u>2021</u>
- Winner to be recognized at the annual OGRA Convention in February 2022.
- Visit:

https://www.ogra.org/images/MPAwa rd Images/2021/2021%20MCA%20Ap plication.pdf for more information.


 Brochure is available in the "Handouts" section on the right side of your screen.

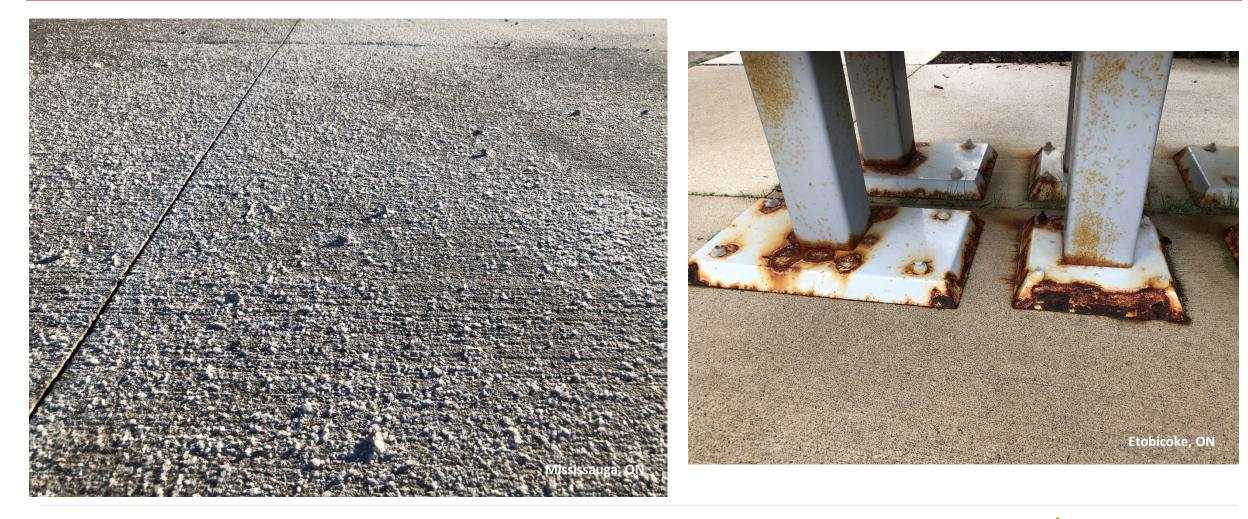
Latest OPSS Concrete Standard Updates

- OPSS.MUNI 350 (Nov. '21) Construction specification for concrete pavement and concrete base
 - Fully revised specification (Last update was in 1998)
- OPSS.MUNI 351 (Nov. '19) Construction specification for concrete sidewalk
 - Introduction of the ACI Flatwork Certification requirement
 - 30MPa updated to 32MPa Class C-2
 - Update coming in Nov. '21 (Addition of Municipal Exterior Flatwork Certification)
- OPSS.MUNI 353 (Nov. '19) Concrete specification for concrete curb and gutter systems
 - Introduction of the ACI Flatwork Certification requirement
 - 30MPa updated to 32MPa Class C-2
 - Update coming in Nov. '21 (Addition of Municipal Exterior Flatwork Certification)
- OPSS.MUNI 1350 (Nov. '19) Material specification for concrete Materials and production
 - Full adoption of Portland-limestone cement

Challenges Surface durability

Challenges Uniform support & proper joint construction

Challenges Public



Challenges Salt usage

Concrete does last!

Industry Support

Program Overview

- Provide a comprehensive overview of Municipal best practices and specifications specifically regarding Ontario Municipal concrete flatwork applications (Sidewalks, curbs, gutters and pavements)
- Educate contractors and inspectors
- Gather and spread knowledge about individual Municipal practices
- Minimize deficiencies in the field

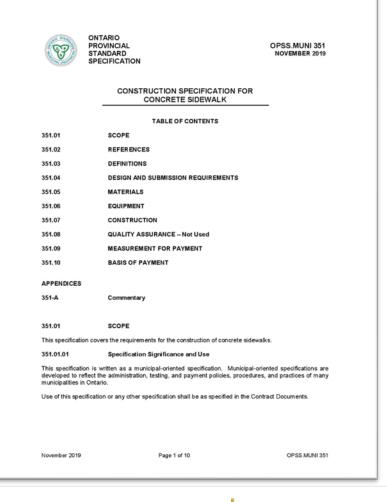
MUNICIPAL EXTERIOR FLATWORK CERTIFICATION

The only Municipal Exterior Flatwork Certification course in Ontario created for the industry, by the industry

Program Recognition OPSS.MUNI 350, 351 & 353 (November '21)

MUNICIPAL EXTERIOR FLATWORK CERTIFICATION

Definition:


Municipal Exterior Flatwork Certification means the certification issued by Ready Mixed Concrete Association of Ontario (RMCAO), after **demonstrating knowledge** to place, consolidate, finish, edge, joint, cure and protect concrete flatwork.

351.04.02 Submission Requirements

Prior to starting the work, documentation shall be submitted, verifying that the Contractor's representative of the placing crew shall be on site and shall have the certification as **specified in Contract Documents**.

Designer Action/Considerations

Certification such as Municipal Exterior Flatwork Certification, or ACI Flatwork Certification, or approved equivalent. (351.04.02)

Program Promotion

- In talks with City of Ottawa, Thunder Bay and LiUNA 183
- Numerous contractors interested in taking the course already

Program Promotion

MEA 2021 Virtual CONFERENCE & AGM

Week of November 22, 2021

Low Carbon Concrete | Reductions that can be made today

all the state of the state

Agenda

Introduction

- What is "embodied carbon" and why is it important?
- What is the construction industry doing about embodied carbon?
- What is the relationship between cement, concrete and GHG emissions?

Decarbonizing concrete

- How are cement and concrete made?
- What is the industry doing to reduce GHG emissions?
- Is the future of concrete carbon neutral?
- What is your role in reducing concrete's embodied carbon?

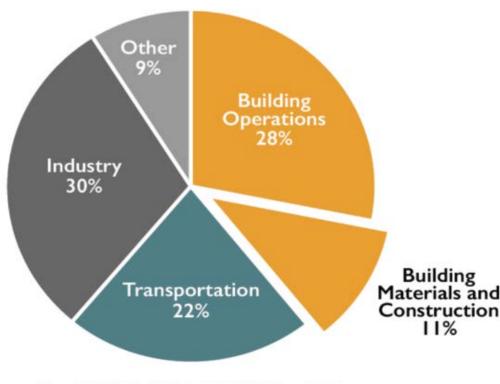
Introduction (Part I): Embodied Carbon

Jasper Place Library, Edmonton, AB. Architect: HCMA Architecture + Design

What is embodied carbon?

Embodied Carbon of Materials

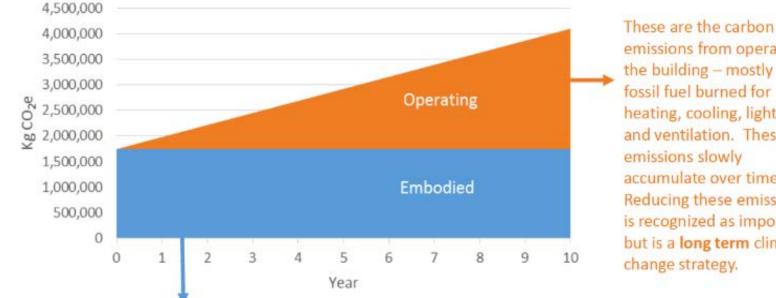
Extraction and manufacturing


Embodied Carbon of Infrastructure

- Materials + transportation, construction
- (sometimes) end of life carbon impacts

Embodied carbon is a significant source of emissions

Global CO₂ Emission by Sector



Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

- Transportation is #3 at 22% of global GHG emissions
- Building Operations and Building Materials and Construction are about 40% of global GHG emissions

Timing of emissions ("radiative forcing") give reductions in embodied carbon added climate mitigation value

emissions from operating the building - mostly fossil fuel burned for heating, cooling, lighting and ventilation. These emissions slowly accumulate over time. Reducing these emissions is recognized as important but is a long term climate change strategy.

These are the carbon emissions from constructing the building - mostly due to materials manufacturing. Reducing these emissions is a near term climate change strategy with immediate benefit, yet there are no policies in place to encourage this.

Introduction (Part II): What's the building industry doing about embodied carbon?

The Broad Museum, Los Angeles, California. Architect: Diller Scofidio + Renfro

The Global 2050 Challenge

A multi-disciplinary challenge to achieve **zero embodied carbon by 2050**.

CaGBC Zero Carbon Building Initiative A comprehensive approach to zero carbon buildings

GCCA Climate Ambition – Carbon Neutral by 2050

Eliminating our direct energyrelated emissions and maximising the co-processing of waste from other industries, which substitutes the use of fossil fuels involved in cement manufacture

Reducing and eliminating indirect energy emissions through renewable electricity sources where available

Reprocessing concrete from construction and demolition waste to produce recycled aggregates to be used in concrete manufacturing

Reducing the content of both

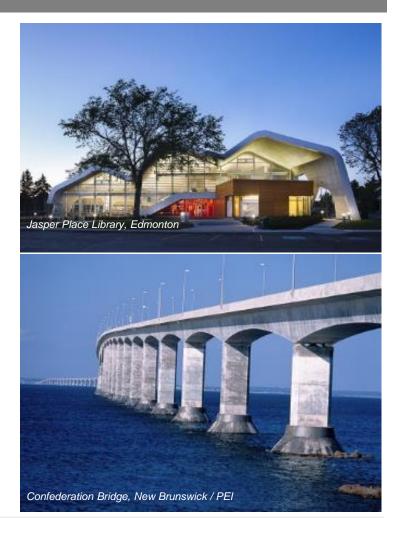
use of concrete in buildings

and infrastructure

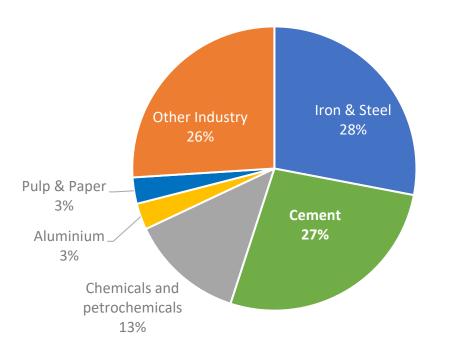
clinker in cement and cement in

concrete, as well as more efficient

Quantifying and enhancing the level of CO₂ uptake of concrete through recarbonation and enhanced recarbonation in acircular economy, whole life context


Introduction (Part III): Cement, Concrete and GHGs

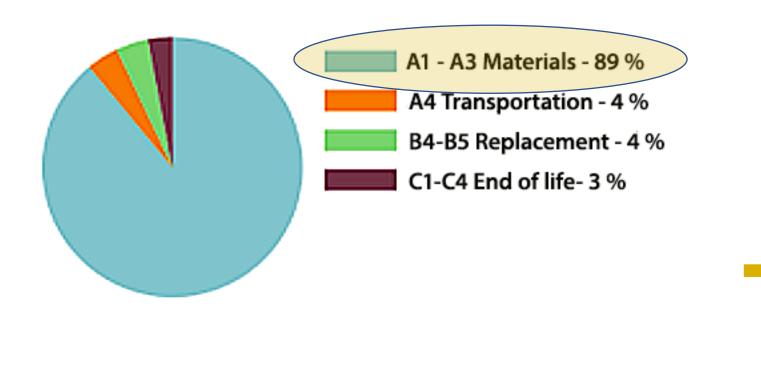
Concrete is the world's most important building material ...


- Virtually all construction above and below ground requires concrete
- Twice as much concrete is used than all other construction materials combined
 - 4 billion tonnes of cement and over 20 billion tonnes of concrete are produced globally each year* (0.05%)
 - Second most consumed commodity in the world, second only to water
- Cement is a global commodity, but concrete is inherently local

* https://www.statista.com/statistics/219343/cement-production-worldwide/

... and a significant source of GHGs

Global direct industrial CO₂ emissions (2014)


Information on this slide is sourced from International Energy Agency, Energy Technology Perspectives 2017

- Up to 8% of global emissions come from the cement produced to make concrete*
- 1.5% (10.8MT) of Canada's GHG emissions in 2017**
- Deep cement and concrete decarbonization technologies and strategies are essential to decarbonizing the built environment.

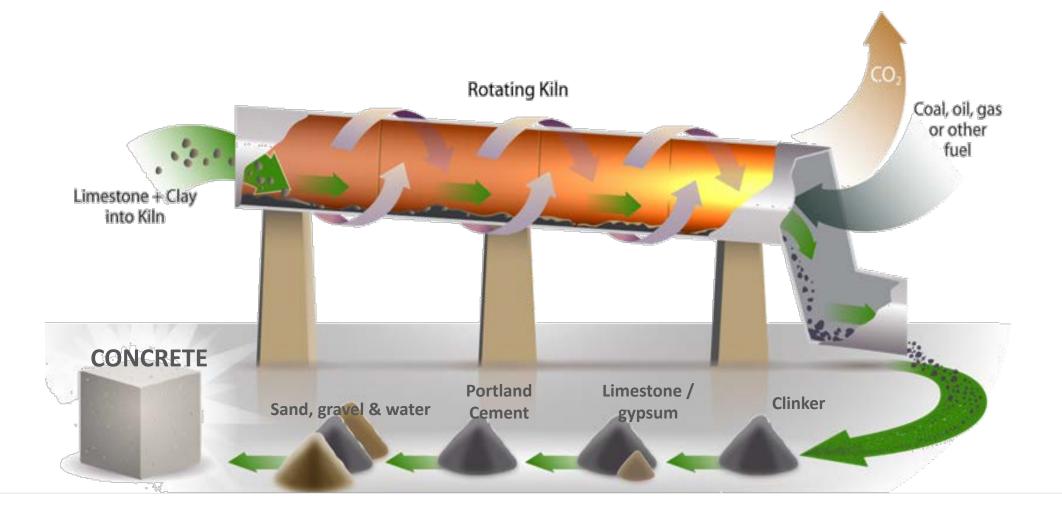
*Andrew, R.M., Global CO₂ emissions from cement production, Earth System Science Data, 2017 **Environment and Climate Change Canada

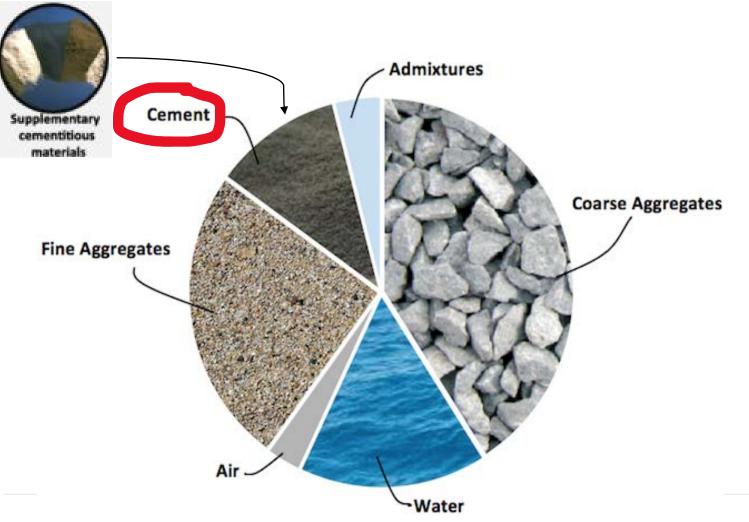
Example: Office Building

Embodied carbon by life-cycle stage



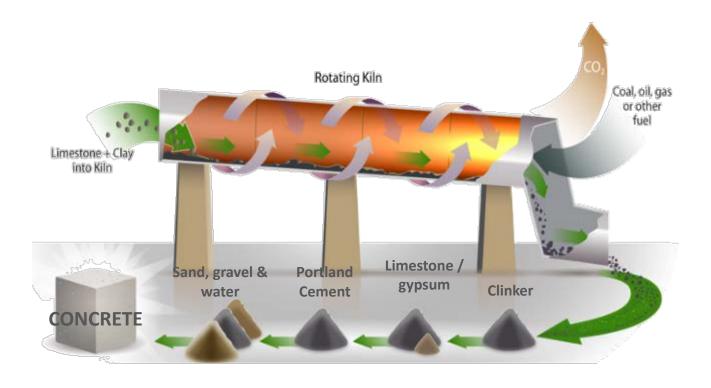
Global warming, kg CO2e - Resource types


This is a drilldown chart. Click on the chart to view details


Decarbonizing Concrete (Part I): How cement & concrete are made

How cement and concrete are made

Cement is a small part of the concrete recipe, but responsible for most of concrete's embodied carbon



Concrete

- Typically 7-15% cement added to water, sand and gravel
- Cement comprises up to 85% of concrete's carbon footprint

Multiple pathways needed to reduce emissions

Sources of GHGs in cement production

1/3rd combustion emissions

Can be addressed using lower carbon fuels

2/3rd industrial process emissions

- Can only be addressed with:
 - Clinker substitution (blended cements)
 - Cement substitution (SCMs)
 - Material efficiency (optimized design)
 - Carbon capture technologies (which can target the combustion emissions as well)

Decarbonizing Cement (Part II):

What is the industry doing to reduce GHG emissions?

The Confederation Bridge, PEI-N.B. Architect: Jean M. Muller

1. Cement Reductions – Low carbon fuels

Typical substitutes

- C & D waste (i.e. wood, shingles, etc.)
- Non-recyclable plastics
- Non-recyclable tires

Future:

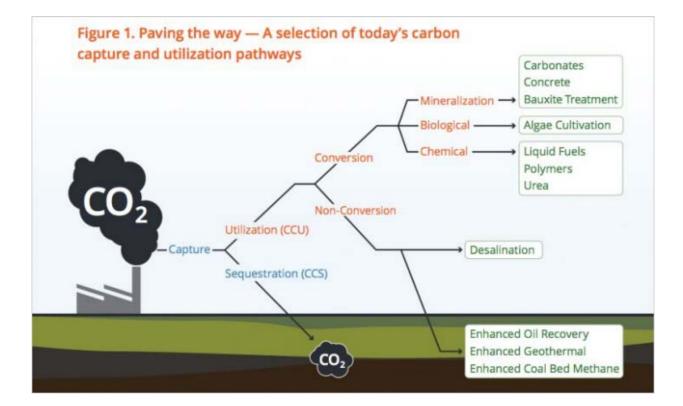
- Biosolids?
- Renewable natural gas?
- Hydrogen?

✓ Reduction Potential: ~ 33%

2. Cement Reductions – Portland-limestone cement (PLC)

- Produces concrete with the same durability and performance
- Code-approved, available across the country
 - OPSS.MUNI 1350 (Nov. '19) for Municipalities (1350.05.01.01 Cementing Materials)
- Could reduce Canada's GHGs by about 1,000,000 tonnes per year
- Higher limestone content (even lower GHGs) is possible and in use elsewhere in the world once PLC is more broadly accepted
- Benefits additive to carbon reductions from using SCMs, like slag and flyash
- ✓ Reduction Potential: 5 10%

Place Victoria, Gatineau, built using Portland-limestone cement


3. Cement Reductions – Carbon capture & utilization

Carbon capture at the cement plant

- Two full scale pilots under development in Western Canada
- ✓ Reduction Potential: 90 95%

Carbon utilization in concrete

- Multiple pathways
- ✓ Reduction potential: 1 70%
 - Future: > 100% ??

Decarbonizing Concrete (Part III): What you can do

The Mayfair Recreation Center, Winnipeg, MB. Architect: Bridgman Collaborative Architecture

Design and specification GHG touchpoints

Concrete's role in infrastructure

- Strength
- Durability
- Resilience

Low carbon concrete strategies

- Portland-limestone cement
- Mix optimization
- Material efficiency
- Design for carbonation
- Recyclability

What is missing in this picture?????

Carbon ROI: Resilience, Durability and Longevity

- **Durability and longevity** are an overlooked carbon reduction strategy
- **Repurpose existing** structures
- Build structures to a much higher standard of durability and resilience

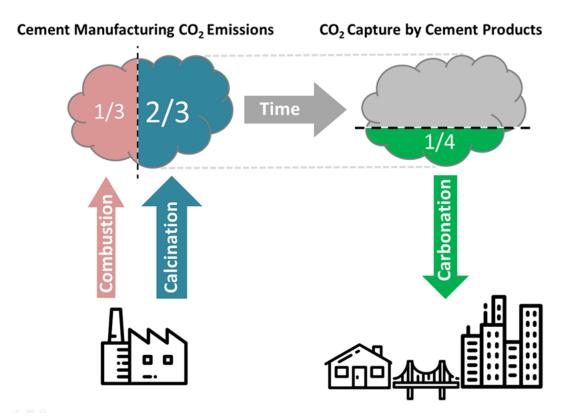
Europe Hotel, Vancouver. Parr and Fee Architects

- 6-storey reinforced concrete heritage building
- Built in 1908-09
- Restored and converted to affordable housing in 1983

- CN Tower -
- Built in 1975 -
- Life expectancy over 300 years

Know your concrete

- Standard mix designs save embodied carbon over 30%)
 - Portland-limestone cement
 - Supplementary cementitious materials (SCMs)
 - Slag
 - Flyash
 - Admixtures
- New tools emerging to help with project specific mix optimization decisions (e.g. on-demand mix-specific Environmental Product Declarations (EPDs))


Source: CMRCA Member Industry-Wide EPD for Canadian Ready Mixed Concrete

(by

Table 8. Summary Results (A1-A3): 31-35 MPa re			
Indicator/LCI Metric	GWP	ODP	
Unit (equivalent)	kg CO2	kg CFC-11	
Minimum	260.49	3.69E-06	
Maximum	449.79	6.40E-06	
#39-35 GU with air 0-14% FA/SC	449.79	5.37E-06	
#40-35 GU without air 0-14% FA/SC	386.61	4.76E-06	
#41-35 Industry Average Benchmark	417.05	5.42E-06	
#42-35 GU with air 15-29% FA	403.68	4.88E-06	
#43-35 GUL with air 15-29% FA	362.81	4.59E-06	
#44-35 GU without air 15-29% FA	347.87	4.35E-06	
#45-35 GUL without air 15-29% FA	313.52	4.10E-06	
#46-35 GU with air 30-40% FA	353.84	4.36E-06	
#47-35 GUL with air 30-40% FA	318.82	4.10E-06	
#48-35 GU without air 30-40% FA	305.99	3.90E-06	
#49-35 GUL without air 30-40% FA	276.55	3.69E-06	
#50-35 GU with air 25-34% SC	364.06	6.11E-06	
#51-35 GUL with air 25-34% SC	329.36	5.86E-06	
#52-35 GU without air 25-34% SC	314.59	5.38E-06	
#53-35 GUL without air 25-34% SC	285.41	5.16E-06	
#54-35 GU with air 35-50% SC	329.77	6.40E-06	
#55-35 GUL with air 35-50% SC	299.71	6.18E-06	
#56-35 GU without air 35-50% SC	285.78	5.62E-06	
#57-35 GUL without air 35-50% SC	260.49	5.44E-06	

Design for (re)carbonation (emerging science)

- Concrete naturally absorbs carbon over its life
- Rate of carbon uptake depends on exposure to air, atmospheric conditions, concrete composition etc.
- Could represent >20% of the industrial process emissions associated with cement content
- Exposed concrete maximizes the effect
- End of life strategies to optimize (re)carbonation are also being explored

Putting low carbon concrete strategies into practice

Communicate carbon reduction goals

Factors affecting CO₂

- Design
- Construction method
- Construction schedule
- Jobsite and seasonal conditions

Industry benchmarks:

 CRMCA industry average EPD for ready mixed concrete

Environmental Product Declaration

CRIMCA Member Industry-Wide EPD for Canadian
READY-MIXED CONCRETE

Where Does the CO₂ Come From?

ZGF Architects Carbon Calculator

Concrete	Proportions	CO2	
Materials	(kg/m³)	(kg/m³)	
Cement	285	296	76.9%
Slag	70	2	0.5%
Coarse Agg.	1036	27	7.0%
Fine Agg.	853	57	14.8%
Water	154	3	0.8%
		385	

Proposed Mix - Suspended Slab - 30 Mpa - Sample Mix Application **Suspended Slab** Mix Design #/Name Sample Mix Strength (psi) 30 Mpg Total CM of Mix in Building m3 SCM Ratio (of SCM+Cement) 19.7 % % SCM (of Total Mix) 2.9 % 11.9 % % Cement (of Total Mix) Ion-renewable nergy Deman Demand (MJ) ntial (CFC rimary Energy otential (kgNe Eutrophicatio Ingredients (kg/m3) Potential (kgSO2eq) Potential (kgCO2eq) cidificatio (kgO3eq) Potential 11eq) (rw Global Wa Do Cement 285 Fly ash 0 Slag 70 1,036 Coarse Aggregate 27.24 Lightweight Aggregate 0 853 Fine Aggregate (Sand) 154 Water **Steel Reinforcement** 150 6571.94 6154.27 Per 1 CM of MIX 2548 2.10 0.10 597.23 0.0000 35.63 **Total Impact** 2548 2 0 597 0.0000 36 6572 6154 Mix LCA - CRMCA Baseline Mix LCA - Custom Baseline Disclaimers & Credits Instructions and Assumptions

Ensure good project QA & QC

Additional cement can no longer be the solution to poor concrete testing!

What we need is:

- CCIL-certified laboratories
- ACI- or CCIL-certified field technicians
- Immediate distributions of test reports
- Addressing jobsite cylinder storage challenges

Optimize Concrete Volume

- Consider the cost/benefits of higher performance concrete if it reduces the total volume of concrete
- Total CO₂ is the real metric to consider
- Requires input from the concrete producer

Utilise Portland-Limestone Cement (PLC) whenever possible

- Straight 1:1 replacement for GU
- Higher use of inter-ground limestone reduced CO₂ by approximately 10%
- Equivalent performance
- Product is being rolled out across Canada

Encourage the use of Supplementary Cementing Materials

Why are SCMs a great idea?

- Significantly reduce the permeability of the concrete and improve critical performance properties
- As by-products from other industries that only require minimal processing, they significantly reduce the CO₂ of the concrete
- Replacement levels for Portland cement can be as high as 70%

Optimize the use of chemical admixtures

Admixture Mix Optimization:

- A primary concrete performance metric is the Water / Cementing Materials Ratio (W/CM)
- Admixtures that reduce the water content without increasing the plastic slump of the concrete can reduce the cement content of the mix design
- Specialty admixtures may assist in cement reduction optimization

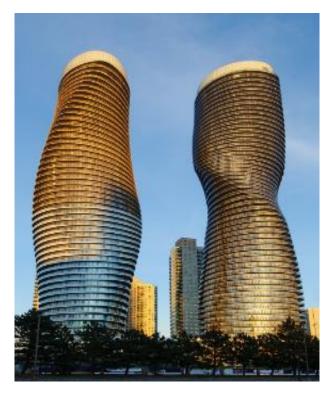
Don't specify materials or limit material usage

Critical Factors:

- Don't specify minimum cement contents!
- Don't specify the use of proprietary materials that the producer is not familiar with!

Look at methods that sequester carbon dioxide

How can concrete sequester CO₂:


- CarbonCure
- Blue Planet

Over time, concrete absorbs CO₂

- More than 60% of the CO₂ released by the cement originates from the calcination of limestone
- This CO₂ is slowly reabsorbed from the air during the life of the concrete

CO₂ reduction strategies Example project

Ontario Concrete Award – Sustainability

- Architect: Christopher Simmonds Architect Inc.
- Length of Construction = 36 Months
- Area of Facility = 84,703 sq ft

Specialty Concrete Mix Designs:

- Total concrete usage = 7,000 m³
- Architectural self-consolidating concrete
- High slump silica fume columns
- High SCM replacement levels
- Integrally coloured concrete
- Smart Concrete[™] Real time strength and temperature monitoring

Sustainability Aspects:

- LEED Silver designation
- Exposed concrete throughout
- Targeted CO₂ reductions of 20% via use of:
 - Silica fume
 - Slag
 - Optimized Mix Designs
 - Avoided ~563 tonnes of CO₂
- Wireless strength sensors to allow for greater SCM usage in winter months

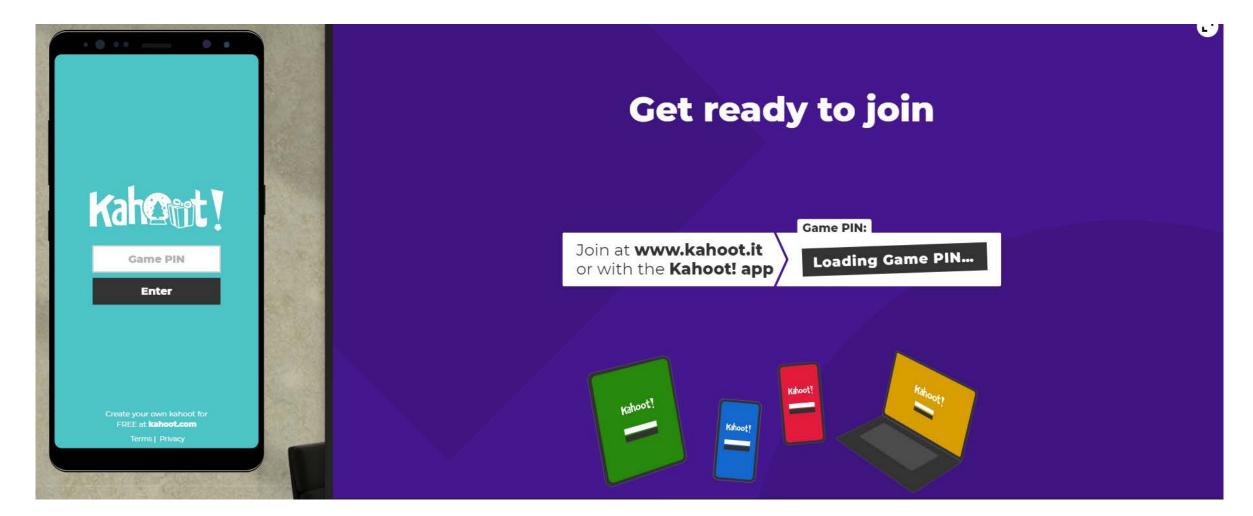
Getting to Zero Concrete's role in decarbonizing the built environment

- Concrete is an essential construction material
- Durability and long life are synonymous with concrete
- Significant steps can be taken to reduce the CO₂ impacts of concrete if we work together
- The cement and concrete industries have a goal of being carbon neutral by 2050

Questions?

Kahoot for Amazon E-gift Cards

- Pop quiz to determine if you paid attention!
- The faster you answer, the more points you will receive



Kahoot for Amazon E-gift Cards

