Concrete & Cement Sustainability Initiatives

Jasper Place Library, Edmonton, AB. Architect: HCMA Architecture + Design

CONCRETE

Build for

Ready Mixed Concrete Association of Ontario

What is Low Carbon Concrete?

- Low carbon concrete refers to concrete produced with a **lower carbon footprint** than traditional mix designs, **while still meeting all relevant performance requirements**
 - Strength, permeability, durability, etc.
- To employ low carbon concrete:
 - Use available lower carbon impact materials
 - Mix design optimization (Admixtures)
 - Carbon mineralization technology
 - Tools to quantify the carbon impact (EPDs)
 - Project carbon budgeting

Environmental Product Declarations (EPDs)

Environmental Product Declarations

- EPDs for concrete are much like nutrition labels for common foods
- EPDs outline the impact a certain concrete mix design has on the environment
- Most important metric is the Global Warming Potential (GWP) which is calculated in kg CO₂/m³

Autrit erving Size 2/3 ervings Per Cor	cup (55g) mainer AD	Fac	cts
mount Per Servic	9		
Calories 230	Ca	lories fron	n Fat 40
		% Dail	y Value*
Total Fat 8g		_	12%
Saturated Fat	1g		5%
Trans Fat 0g			
Cholesterol Or	ng		0%
Sodium 160mp		34	7%
Total Carbohy	drate 37	7g	12%
Dietary Fiber 4	łg		16%
Sugars 1g			
Protein 3g			
			1.000
Vitamin A			10%
Vitamin C			8%
Calcium			20%
iron		VII.201927	45%
 Percent Daily Values Your daily value may your satorie needs. 	are based o be higher or	in a 2,000-ce lower depen	lohe diet. Iong on
	Calories:	2.000	2,500
Tatal Fat Sat Fat Cholesiensi Sotium Total Certschythate	Less than Less than Less than Less than	65g 20g 300mg 2.400mg 300g 300g	80g 250 300mg 2.400mg 375g

Product EPDs Environmental Impacts

Declared Product: Mx 4F05C901 + Bode Plant EF50 Gen Use 4* line w/c.50 Compressive strength: 4000 psi at 28 days	
Declared Unit: 1 mf of caroons	
Global Merring Prositial (Ng (20)-ot)	212
Ocons Depiction Parantal (ng CFC-11-sg)	3.454
Add Battice Potential (kg 525-ac)	2.05
Bulkophisation Peterlat (Sp.Nm)	0.37
Photochostics: Brog Creation Potential (sp (g-sp)	12.8
Tatal Primary Energy Consumption (ME)	1,577
Nonresevable (HE)	1.904
Renewable (W)	73.7
Tatal Concrete Mater Consumption (h)	265
Batching Wester (rm)	0.00
Waiting Water (mg)	8.850
Somerovski s Material Resource Consumption (Fg)	2.64
Astervable Veterial Resource Consumption (kg)	1.57
Hazardaus Maste Production (1g)	0.61
Nonhatandous Warts Production (rg)	2.16
Product Components: cturbed approprint (ASTM 2019, Portand o C150, skip comert (ASTM C200, Tip cark (ASTM C2019, administration both water (ASTM C2009)	ariant (ASTM (RETWORK)

Evolution of Low Carbon Concrete in Ontario

Concrete Ontario Member Industry-Wide EPD for Ready-Mixed Concrete

				Build	ding L	ife Cyc	ie Inf	ormat	tion N	Iodule	25					
Prot	Product stage Construction Process stage						U	se sta	ge			Ene	End-of-lifestage			
Raw Material supply	Transport	Manufacturing	Transport	Construction/Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De- Construction/	Transport	Wasteprocessing	Disposal	
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B 6	87	C1	C2	G	C4	

Figure 1: Life cycle stage schematic – alpha-numeric designations as per NSF PCR 2021

2022 Concrete Ontario Report Scope A1-A3

2022 Concrete Ontario Report Mix Designs

2022 Concrete Ontario Report Mix Designs

- 23 mix designs were chosen to represent the Ontario ready-mix industry
- Mix designs are fully representative of the OBC and CSA A23.1 Tables 1 and 2 – Exposure Classes performance requirements
- Slag replacement levels between 0-50%
- Baselines were set based on average Ontario cement content and slag usage in 2021 for each mix design (Type GU as base cement)

2022 Concrete Ontario Report Mix Designs

Table 1	Table 18. LCA Results 30 MPa concrete with air & 0.50 w/cm (F-1)												
	Unit	Baseline 30MPa concrete with air & 0.50 w/cm (F-1) GU 15 SL	30 MPa concrete with air & 0.50 w/cm (F-1) GU	30 MPa concrete with air & 0.50 w/cm (F-1) GU 15 SL	30 MPa concrete with air & 0.50 w/cm (F-1) GU 25 SL	e 30 MPa concrete with air & 0.50 w/cm (F-1) GU 35 SL	30 MPa concrete with air & 0.50 w/cm (F-1) GU 50 SL	e 30 MPa concrete with air & 0.50 w/cm (F-1) GUL	30 MPa concrete with air & 0.50 w/cm (F-1) GUL 15 SL	30 MPa concrete with air & 0.50 w/cm (F-1) GUL 25 SL	30 MPa concrete with air & 0.50 w/cm (F-1) GUL 35 SL	30 MPa concrete with air & 0.50 w/cm (F-1) GUL 50 SL	
Environm	ental impacts		' \										
GWP	kg CO2 eq.	292.72	329.02	292.72	268.52	244.32	208.02	307.08	274.07	252.07	230.06	197.05	
ODP	kg CFC-11 eq.	7.74E-06	7.57E-00	7.74E-06	7.86E-06	7.97E-06	8.15E-06	7.23E-06	7.45E-06	7.60E-06	7.75E-06	7.98E-06	
EP	kg Neq.	0.23	3 0.25	0.23	0.22	0.21	0.20	0.23	0.22	0.21	0.20	0.19	
AP	kg SO2 eq.	1.40	1.45	1.40	1.36	1.32	1.26	1.38	1.33	1.30	1.27	1.23	
POCP	kg O3 eq.	23.58	23.86	23.58	23.39	23.20	22.92	22.85	22.72	22.63	22.55	22.42	
Use of pri	mary resources												
RPRE	MJ, NCV	82.80	91.24	82.90	77.18	71.56	63.13	90.98	82.59	76.99	71.40	63.00	
RPRM	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NRPRE	MJ, NCV	1798.64	1865.83	1798.64	1753.84	1709.04	1641.85	1765.03	1712.95	1678.24	1643.52	1591.45	
NRPRM	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Baselines are critical to set and achieve carbon reduction goals

GWP Reductions from 2017 to 2022

CRMCA EPD Report Benchmark	Ontario EPD Report Baseline	% Reduction		
2017	2022			
25 MPa Industry Average Benchmark with air	Baseline 25 MPa concrete with air &	14.4		
(6% SL, 4% FA)	0.55 w/cm (F-2) GU 10 SL			
304.52 kgCO ₂ /m ³	260.64 kgCO ₂ /m ³			
30 MPa Industry Average Benchmark with air	Baseline 30 MPa concrete with air &	16.3		
(6% SL, 4% FA)	0.50 w/cm (F-1) GU 15 SL			
349.68 kgCO ₂ /m ³	292.72 kgCO ₂ /m ³			
35 MPa Industry Average Benchmark with air	Pa Industry Average Benchmark with air Baseline 35 MPa concrete with air			
(6% SL, 4% FA)	GU 15 SL			
417.05 kgCO ₂ /m ³	334.49 kgCO ₂ /m ³			
40 MPa Industry Average Benchmark with air	Baseline 40 MPa concrete with air	21.2		
(6% SL, 4% FA)	GU 15 SL			
458.98 kgCO ₂ /m ³	361.65 kgCO ₂ /m ³			
45 MPa Industry Average Benchmark without air	Baseline 45 MPa concrete without air	17.9		
(6% SL, 4% FA)	GU 15 SL			
426.33 kgCO ₂ /m ³	349.88 kgCO ₂ /m ³			

CONCRETE Ready Mixed Concrete Association of Ontario

CONCRETE Build for life"

2022 - 2027 %

Cement industry

Reductions?

innovations

switchover to

Complete

Type GUL

What are the Differences Between EPD Types?

- Industry Average CRMCA Ontario Report
- **Type II** Facility Specific
- **Type III** Facility Specific & Third Party Verified

CERTIFIED

CONCRETECARBON: Guideline for Specifying Low Carbon Ready Mixed Concrete in Ontario (November 2022)

So How Do I Produce Low Carbon Concrete?

Concrete Plant Factors:

- Raw Materials
- Raw Material Transportation
- Diesel Fuel Usage
- Natural Gas / Fuel Oil Usage
- Electricity

Raw Materials (kg CO₂/tonne):

- **GU Cement** = 880
- **GUL Cement** = 780
- **Slag** = 150
- Aggregates = 30
- Fly Ash = 10
- Admixtures = 1
- Water = 1

Evaluating all your Raw Materials

- Utilize raw material EPDs
- Utilize local materials
- Evaluate the cement type

C = =

Portland-

imestone Cement

Maximize the Use of Supplementary Cementitious Materials (SCMs)

Cement Type & SCM usage can result in dramatic reductions

CONCRETE

Build for life

Maximize the Use of Supplementary Cementing Materials (SCMs)

- Slag is the primary SCM in Ontario
- Silica Fume & Fly Ash can also be used
- New & innovative products are coming to market

Build for life

CONCRETE

Optimize Aggregates

- Larger Aggregate Size:
 - Lower paste content versus more challenging placement conditions
- Aggregate Gradation Optimization
- Recycled Concrete Aggregates

CONCRETE

Build for life

Utilize Chemical Admixtures

- Water reduction
- Improved placeability
- Innovative performance and carbon reduction products

Specifying Low Carbon Ready Mixed Concrete in Ontario

Performance-Based Specifications

Giving the ready mixed producers the flexibility to provide concrete that meets the specified performance criteria via the use of a CSA Performance-Based Specification approach will lead to an optimized design AND a more sustainable concrete solution.

CONCRETE

Build for life

Performance-Based Specifications

Two Options in CSA A23.1/.2

PRESCRIPTIVE

It is highly discouraged to specify any mix proportions, including material quantities (e.g., admixtures, aggregates, cementitious materials, and water), as the mix design becomes prescriptive, and the owner assumes full responsibility for the concrete performance.

Using prescriptive mix designs can not only negatively impact the performance of the concrete but can also very likely negatively impact the realization of carbon reduction goals on the project since the specifier will not be aware of the raw materials used by each individual concrete producer or plant.

PERFORMANCE

Performance-based specifications offer the specifier the ultimate peace of mind that the ready mixed producer is responsible for the performance of the concrete as delivered.

They also give the ready mixed producer flexibility in optimizing mix designs.

This flexibility becomes critically important when a ready mixed producer needs to use multiple CSA-approved approaches in designing mixes to meet a variety of requirements including strength, durability, constructability, and carbon/sustainability.

Performance-based specifications are critical to specifying low carbon concrete AND to achieving low carbon concrete.

Performance-Based Specifications

CSA A23.1 Table 5 – Owner Responsibilities

- Exposure Class
- Strength at Age (e.g., 35 MPa at 56 days)
- Required durability criteria (e.g., Maximum 0.40 w/cm, Class C-1)
- Additional criteria for durability (AVS, RCP, Shrinkage Limits, etc.)
- Architectural Requirements (e.g., Colour, surface finish, etc.)
- Pre-qualification or verification criteria (i.e., Low Permeability, Low Shrinkage, etc.)
- Any other properties that might be required to meet the owner's performance criteria

CONCRETE

Build for

What Does This Mean for the Concrete Producer?

Element	Compressive Strength (MPa) 28 days U.N.O.	Class of exposure (CSA A23.1 Table 1 & 2)	Maximum water- to-cementitious materials ratio	Nominal maximum sizes of coarse aggregate (mm)	Air content category (CSA A23.1 Table 2)	Range in air content (%) (CSA A23.1 Table 4)	Ontario Industry-Average EPD Baseline Mix GWP (kgCO ₂ /m³)
Footings	30 MPa (56 days)	N		20			264.38
Slab on grade (interior)	25 MPa	N-CF	0.55	20			264.94
Exterior columns (exposed)	25 MPa	F-2	0.55	20	2	4-7	260.64
Slab on grade (exterior)	32 MPa	C-2	0.45	20	1	5-8	326.46
Foundation walls (exposed)	30 MPa	F-1	0.50	20	1	5-8	334.49
Retaining/Foundation walls/shear walls (exposed)	35 MPa	F-2	0.55	40	2	3-6	334.49
Shear walls (not exposed)	35 MPa	Ν		20			295.46
Columns (exposed)	35 MPa (56 days)	C-1	0.40	20	1	5-8	313.07
Architectural columns (exposed) SCC	35 MPa (56 days)	C-1	0.40	10	1	6-9	377.33
Topping on steel deck	25 MPa	N		10			254.05
Mechanical housekeeping pads	20 MPa	N		20			220.29

Communication & Evaluation

- Schedule
- Placement method
- Special applications

Challenges For the Concrete Producer

- Specifications
- Weather Impacts
- Contractor Requirements
- Field Testing Variability
- Raw Material Availability

Thank you!

