The Benefits of Using Recycled Crushed Aggregates in Infrastructure Projects March 24, 2023

Presenter: Amy Pastor, PE, CxA, LEED AP, ENV SP (EXP | Vice President, Sustainability)

THANK YOU, SUPPORTERS

Financial Supporters

Good Roads

*exp.

In-kind Supporters

ASSOCIATION OF CONSULTING ENGINEERING COMPANIES ONTARIO

Project Objectives

- To support municipalities in achieving the targeted goals with efficiencies, by furthering the use of Recycled Crushed Aggregates (RCA1010) more widely throughout Ontario.
- To **promote** economic, sustainable and more environmentally friendly practices.
- To verify the compliance of existing RCA1010 Product within the GTA with the applicable OPSS1010 Standard Specification.

Work Approach and Methodology

- 1. Work with Ontario Ministry of Transportation (MTO) and other Road Authorities.
- 2. Desktop review of historical records, including previous projects and case studies.
- 3. Collection of Gran A (RCA1010) samples from different crusher yards/stockpiles.
- 4. Perform laboratory testing in accordance with the current OPSS1010 for granular base materials.
- 5. Conclusions and next steps.

Benefits to using RCA


- **Expands** life of existing pits and quarries
- Lowers the cost of hauling virgin aggregate to project sites
 - **Diverts** aggregates from landfill
 - **Reduces** GHG emissions from the extraction and hauling processes

Aggregate Supply Chain The Long Haul: Examining the Implications of Far-From-Market Aggregates

Calculating the Energy and Emissions Savings

Transportation of Aggregate: Fuel Consumption and GHG Emissions

Daily and Annual Fuel Consumption and GHG Emissions by Distance*

	Distance	Per Year (All Truckloads)	Per Day (All Truckloads)
Fuel Consumption (Litres of Diesel Fuel)	Per km 35 km 75 km 110 km	437,500 15,312,500 32,812,500 48,125,000	1,989 69,602 148,148 218,750
	Distance	Per Year (All Truckloads)	Per Day (All Truckloads)
Greenhouse Gas Emissions (Metric Tonnes of CO2)	Per km 35 km 75 km 110 km	1,189 41,344 88,594 129,938	5 188 403 591

*Based on 25M tonnes

RCA: Applicable Standard Specifications

- Gran A aggregate (roadway base course)
 - shall be according to Ontario Provincial
 Standard Specification OPSS 1010
 - and shall conform to the requirements of gradation and physical properties as specified
- OPSS.PROV or OPSS.MUNI 1010

ONTARIO PROVINCIAL STANDARD SPECIFICATION

METRIC OPS.PROV 1010 APRIL 2013

MATERIAL SPECIFICATION FOR AGGREGATES - BASE, SUBBASE, SELECT SUBGRADE, AND BACKFILL MATERIAL

	TABLE OF CONTENTS
1010.01	SCOPE
1010.02	REFERENCES
1010.03	DEFINITIONS
1010.04	DESIGN AND SUBMISSION REQUIREMENTS - Not Used
1010.05	MATERIALS
1010.06	EQUIPMENT - Not Used
1010.07	PRODUCTION
1010.08	QUALITY ASSURANCE
1010.09	OWNER PURCHASE OF MATERIAL - Not Used

Allowable Limits of RCA and RAP in Different Types of Granular Materials

Standard Specifications	Material	Allowable Percentage of Recycled Material (%) by mass			
		RCA	RAP		
	Granular A	Up to 100 %	Up to 30 %		
OPSS.MUNI 1010 (November 2013)	Granular B Type I and Type III	Up to 100 %	Up to 30 %		
	Granular B Type II	0 % (Recycled materials shall not be permitted)			
	Granular A	Not specified	Up to 30 %		
OPSS.PROV 1010 (April 2013)	Granular B Type I and Type III	Not specified	Up to 30 %		
	Granular B Type II	0 % (Recycled materials shall not be permitted)			

MTO Central Region | 2020 Construction Year – 400 Series Projects

			ŀ	lighway Numbe	r	
		401	400	401	404	410
	Between Credit River and 410/403 Interchange	HWY 400 1.0km north of King Rd northerly to 1.9km north of Lloydtown- Aurora Rd	Jane St to Allen Rd	Richmond Hill, ON	HWY 410 Brampton, ON	
Granular A Unit Rate (Avg. 3 Low Bids)		\$15.25	\$18.89		\$22.44	\$ 24.20
Granular A Tender Qu	uantity in tonnes	275,955	142,841	10,240	64,175	46,087
Total Qty of Natural + Recycled Aggregates Placed in 2020		25,459	47,366	1,121	21,185	22,680
Recycled Materials	RCA – Quantity (t)	24,949	47,366	974	16,842	15,780
Source Info	Name of the Source	D Crupi & Sons	Strada Aggregates	Furfari	D. Crupi	Gazzola
	Location of the Source	176 Bethridge	Vaughan Yard	1159 Tapscott Rd Scarborough	14th Ave, Markham	529 Carlingview Dr. Etobicoke

Highway 400 (MTO, Ontario)

- **Project Description:** Highway widening including Centre Barrier Wall replacement from Major Mackenzie Drive to King Road
- Years of Construction: 2017 2021
- **Pavement Layers:** Recycled aggregate was used to replace both Gran B and Gran A
- Total Quantity: 300,000 tonnes
- Cost Savings: \$1.2M
- Source of RCA (Distance to Site): <10km from site

\$1.2M cost savings

1978 Edens Expressway (Chicago, IL)

- Project Highlights
 - First major US urban freeway completely reconstructed
 - Largest highway project using concrete recycling (1981)
 - The Illinois Department of Transportation permitted the use of RCA in base layers and fill applications on this project
- Pavement Layers: 350,000 tonnes of old pavement was crushed
- Fuel savings: 200,000 gallons (no removal from site)
- **Current Condition:** Excellent service for nearly 40 years under extremely heavy traffic

Concrete Recycling Operation Set up Inside of Edens Expressway Cloverleaf Interchange (Photo from NHI 1998)

₩ MAJOR US URBAN FREEWAY COMPLETELY RECONSTRUCTED 350,000 TONNES OF OLD PAVEMENT CRUSHED 200,000 GALLONS OF FUEL SAVINGS

Other Roadway Projects: USA

- The Illinois State Toll Highway Authority use of RCA in base materials between 2006 and 2016, resulting in savings of more than \$61 million (2016)
- An 18-mile two-lane recycling project in Minnesota that saved 150,000 gallons of fuel and 27% of project costs (1981).
- A 1.5-mile Wisconsin Interstate that was projected to save more than \$250,000 over the project life (2015).

\$61M

\$250,000 SAVED OVER PROJECT LIFE

Pearson International Airport, Old Terminal 1 – Decommissioning / Demo

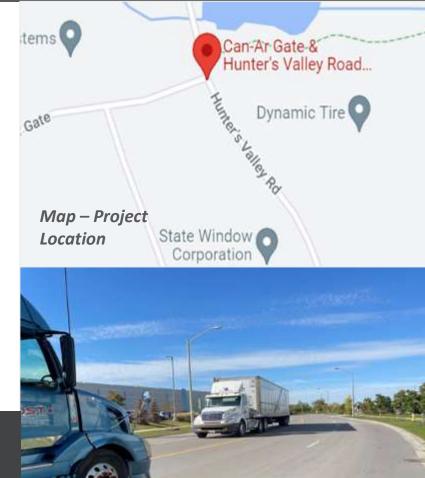
- Year of Demolition: 2004 2006
- Year of Construction New T1 Apron: 2006
- Total Quantity Recycled On Site: 253,000 tonnes

Source of Information: Lester B. Pearson Airport Greater Toronto Airports Authority, "Old Terminal 1 Decommissioning and Demolition", Paper prepared for presentation at the "Innovations in Bridge Engineering (A)" Section of the 2005 Annual Conference of the, Transportation Association of Canada, Calgary, Alberta.

253,000 TONNES Recycled On Site

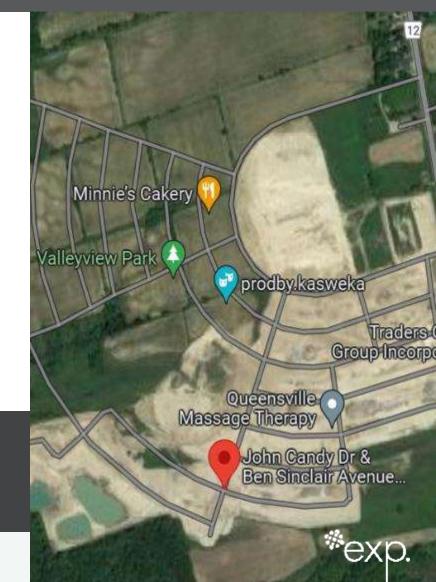
Greenwood Racetrack Development

- **Project Location:** East half of the former Greenwood Racetrack at Queen / Woodbine / Lakeshore (Toronto)
- **Key Highlights:** First use of RCA as road base material in Toronto's history
- Years of Construction: 1996 2009
- Pavement Layers: 150 mm HMA, over 150 mm Gran A (RCA 19 mm max size), over 300 mm Gran B (RCA 50 mm max size)
- **Pavement Condition:** EXP reviewed the conditions in Sept. 2022. Pavement is in good condition, without any structural failures.


#1 USE OF RCA AS ROAD BASE IN TORONTO Zero pavement structural failures

Huntington Glen

- **Project Details:** Phase 2 of an industrial subdivision (Boca East Investment Ltd.)
- **Project Location:** East of Highway 50 (Vaughan); Hunter's Valley Road and Can-Ar Gate
- Years of Construction: 2012 2016
- **Pavement Layers:** 125 mm HMA, over 125 mm Granular Base (19 mm diameter RCA), over 405 mm Granular Subbase (50 mm diameter RCA)
- Test Results (2012): EXP concluded that the 19 mm and 50 mm RCA samples are in conformance with Gran A and Gran B Type 1 requirements outlined by OPSS 1010.



Queensville Subdivision Phase 6 (Queensville Development Inc.)

- Project Location: Town of East Gwillimbury John Candy Dr. / Ben Sinclair Ave.
- Year of Construction: July 2021
- Quantity RCA (Gran A and Gran B): 13,230 tonnes
- **Cost Savings:** \$152,145 (\$11.5/t).

13,230 TONNES \$152,145 cost savings

Highway 400 (MTO, Ontario)

- **Project Description:** Constructing Light Rail Transit on Finch Avenue (Humber College Rd to Keel Street)
- Year of Construction: 2019 2023 (projected)
- **RCA Applications:** RCM with no asphalt particles will replace Gran A (pipe bedding)
- Total Estimated Quantity: 85,000 tonnes
- Cost Saving: \$510,000 (saving \$6.0/t)
- Distance from Crusher Yard to Project: <10 km

Toronto Pearson Airport's Runway Rehabilitation Project

- **Project Description:** Rehabilitation of Runway 06L/24R, Pearson's second-busiest runway. Project will extend the life of the runway.
- Use of RCA: Crushed concrete from the runway pavement removal will be used as the sub-base and base materials and recycled milling asphalt materials on approach roads in the vicinity of the runway.
- Year of Construction: Fall 2022

Project will extend the life of Pearson Airport's second busiest runway.

Details of Collected Samples

Sample No.	Yard Address (Producer/Suppliers)	Sample Collection Date
1P/1C/1E (Gran A-RCA1010)	1667 Creditstone Rd, Concord (Strada Aggregate)	8/8/2022
2P/2C/2E (Gran A-RCA1010)	176 Bethridge Rd, Etobicoke (D. Crupi & Sons Ltd)	30/8/2022
3P/3C/3E (Gran A-RCA1010)	2777 14 th Ave, Markham (D. Crupi & Sons Ltd)	8/8/2022
4P/4C/4E (Gran A-RCA1010)	85 Passmore Ave, Scarborough (D. Crupi & Sons Ltd)	30/8/2022
5P/5C/5E (Gran A-RCA1010)	120 Wentworth Crt, Brampton (Strada Aggregate)	7/9/2022
6P/6C/6E (Gran A-RCA1010)	10 Leslie St, Toronto (Strada Aggregate)	8/9/2022
1E - Gran A Native	437159 4 Line, Shelbourne (Strada Aggregate)	9/9/2022
2E - Gran A Native (CRL)	Breckon East	16/9/2022
3E - Gran A Native (CRL)	Dundas West	16/9/2022

Samples (1P-6P) for Gradation and Physical Properties Tests(Pavement)

Samples (1C-6C) for Freeze/Thaw Cycle and Magnesium Sulphate Soundness(Concrete)

Samples (1E-6E) for Environmental Tests

Note: Samples of RCA1010 with same number are collected from same stockpile (e.g., 1P/1C/1E)

Lab Testing: Gradation

• All tested samples of Gran A (RCA1010) met requirements

ltem	% Passing by Mass – Granular A (OPSS.PROV 1010)									
Sieve No	26.5 mm	19 mm	13.2 mm	9.5 mm	4.75 mm	1.18 mm	300um	75 um		
Acceptable Limits	100 - 100	85 - 100 (87-100) ⁽¹⁾	65 - 90 (75-95) ⁽¹⁾	50 - 73 (60-83) ⁽¹⁾	35 - 55 (40- 60) ⁽¹⁾	15 - 40	5 - 22	2 - 8 (2-10) ⁽²⁾		
Sample No.		Results – Total % Passing (Gran A RCA1010)								
1P	100	96.1	81.8	65.8	40.9	25.2	12.7	5.2		
2P	100	95.0	82.3	68.6	51.6	31.3	16.1	7.9		
3P	100	91.7	76.6	64.5	46.8	31.3	15.9	5.0		
4P	100	96.3	84.3	66.7	43.1	21.0	9.9	4.6		
5P	100	93.0	74.2	61.4	45.2	32.3	18.1	6.5		
6P	100	94.0	81.4	70.1	53.5	33.4	19.0	8.0		
Minimum	100	91.7	74.2	61.4	40.9	21.0	9.9	4.6		
Maximum	100	96.3	84.3	70.1	53.5	33.4	19.0	8.0		
Average	100	94.3	80.1	66.1	46.8	29.0	15.2	6.2		

(1) Where aggregate is obtained from an iron blast furnace slag source.

(2) Where aggregate obtained from a quarry or slag source.

Lab Testing: Results of Physical Properties vs. OPSS.PROV.1010

Dhurical Droporty	OPSS.PROV 1010	Results of Tested Sample of Gran A (RCA1010)				
Physical Property	(April 2013)	Minimum	Maximum	% Pass		
Coarse Aggregate Petrographic Requirement (LS-609)	Test is Not Specified	0	1.0	100 %		
Fine Aggregate Petrographic Requirement (LS-616)	Test is Not Specified No Deleterious Materials			100 %		
Micro-Deval abrasion coarse aggregate loss, % maximum (LS-618)	25 %	16.5	22.2	100 %		
Micro-Deval abrasion fine aggregate loss, % maximum (LS-619)	30 %	7.9	19.4	100 %		
Plasticity Index, maximum (LS-703/704)	NP (Non-Plastic)	NP	NP	100 %		
Percent crushed, minimum (LS-607)	60 %	96	99.7	100 %		
Asphalt Coated Particles, % maximum (LS-621)	30 %	1.4	33	83 %		
Recycled Concrete Materials, % maximum	100 %	100	100	100 %		
Amount of Contamination, % maximum	<= 1 % (total, combined)	0.02 % (Wood)		100 %		
(LS-630)	<= 0.1 % (wood only)	0.1 (Ceramic)		100 /0		
Sulphate Concentration (µg/g)	Not Specified	Not Specified 650 870		100 %		
Determination of Permeability, k (LS-709)	k > 1.0 x 10^-4 cm/s	6.9X 10^-4	1.3 X 10^-2	100 %		

Lifecycle Analysis: Cost of RCA and Estimated Savings

			Unit Rate	(\$/ton)	Savings (Gran A – RAP Vs. Gran A Native)				
Pit/Quarry Locations	Average Distance from Pit/Quarry to Project Location (km)	Average Distance from Closest Crusher of Gran A RAP to Project Location (km)	Total Tonnes per Project (approx.)	Gran A - Native Average	Gran A - RCA Average	\$/tonne Average	\$/Project		
Brechin	80.5	18 (Mt. Albert)	11,000	\$22	\$15	\$7	77,000		
Orillia	115	6 (Vaughan)	100,000	\$23	\$14	\$9	900,000		
Milton	52	10 (Brampton)	7,000	\$22.5	\$14	\$8.5	59,500		
Flamboro	70	14 (Mississauga) 50,000		\$24	\$16	\$8	400,000		
	Total Savings for four Projects \$								

Unit Rates of Gran A RAP Vs. Gran A Native and Estimated Savings Based on Project Location

Assumptions and Metrics

Product	Energy (MJ/t)
Continuous reinforced concrete	29
30 % reclaimed material	37
Untreated Granular Material	40

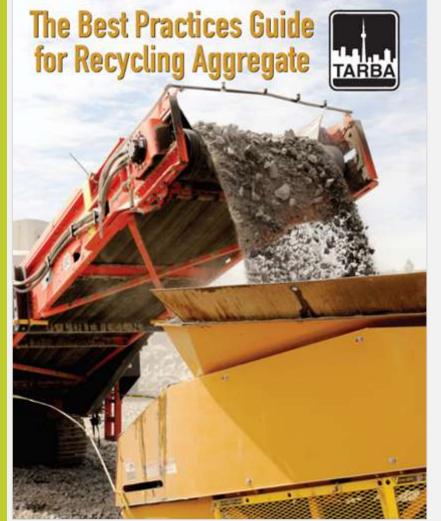
Product	Energy Savings (%)	GHG Emissions Savings (%)
Virgin/Natural Aggregate	_	_
30 % RAP with 70 % Natural	7 %	14 %
100 % RAM	25 %	46 %

Product	GHG Emissions (kg/t)
Continuous reinforced concrete	5.1
30 % reclaimed material	8.25
Untreated Granular Material	9.6

Emissions from RCA and Estimated Savings

GHG Emissions (MTCO2e)												
	Extrac	Extraction		Transportation of unfinished product to processing plant Processing		Processing		Transportation of finished product to Site ¹		tal		Equivalent
Location	Gran A - Native * impacts from	Gran A - RCA	Gran A - Native * assum	Gran A - RCA ed equal		Gran A - RCA	Gran A - Native * using distances	Gran A - RCA s from each location		Gran A - RCA	Savings by using	passenger vehicles of avoided
Brechin	27.50	0.00	4.46	4.46	for sc 4.46	16.50	38.74	8.66	produc 75.15	29.62	RCA 45.53	emissions 9.8
Orillia	250.00	0.00	40.50	40.5	40.50	150.00	503.13	26.25	834.13	216.75	617.38	133.0
Milton	17.50	0.00	2.84	2.84	2.84	10.50	15.93	3.06	39.10	16.40	22.70	4.9
Flamboro	125.00	0.00	20.25	20.25	20.25	75.00	153.13	30.63	318.63	125.88	192.75	41.5

Total Equivalent Passenger Vehicles of the Avoided Emissions (Four Projects)189.3



Industry QC Plan and Best Practices Guide (TARBA)

Date: October 27, 2022 Revision; 1

GC Plan for Production of Recycled Crushed Aggregates

Conclusions

	/	
$\mathbf{\sim}$		
<u> </u>	_	

The existing Gran A RCA1010 produced within the Greater Toronto Region can achieve/pass all the required standard specifications for Gran A – Native for gradation, physical properties, sulphate concentration, and Soundness of Aggregate using Magnesium Sulphate mentioned in related OPSS1010, OPSS 1002, and TS1010, without any issues or concerns.

With the implemented QC/QA plans and programs, the use of RCA in infrastructure projects within the GTA and Ontario should be encouraged.

Greater use of RCA materials in municipal roads and other infrastructure projects represents an opportunity for Ontario municipalities to demonstrate their environmental commitment.

Most of the previously undertaken research and studies (within Canada, United States, and other countries) confirmed the importance of encouraging the use of RCA due to the proven acceptable pavement performance, valuable financial savings, and environmental and sustainable benefits.

The measured sulphate concentrations are insignificant (much lower than the maximum allowable value of 5000 μ g/g, from 650 μ g/g to 870 μ g/g with average value of 770 μ g/g), with low risks of heaving.

The produced recycled crushed aggregate materials (Gran A base and Gran B subbase) are available in large quantities at different yards/depots across this region with lower unit rates when compared with native granular materials. THE BENEFITS OF USING RECYCLED CRUSHED AGGREGATES IN INFRASTRUCTURE PROJECTS

Next steps

- 1. Hosting workshops and site visits
- 2. Circulating TARBA's QC template plan
- 3. Incorporating financial and environmental objectives into municipal documents; adopting KPIs relating to the use of recycled crushed aggregates
- 4. Involving third-party consultants
- 5. Updating municipal standard specifications

exp com